

Online Appendices (Appendix 3 from Main Paper)

for

The Strategic Implications of Scale in Choice-Based

Conjoint Analysis

by

John R. Hauser

Felix Eggers

and

Matthew Selove

June 2018

1. Numerical example for profits, market shares, equilibrium prices, first-order conditions and second-order conditions for stylized model.
2. Numerical example of market-research decisions by a sophisticated follower.
3. Attribute descriptions and example choice tasks for dormitory CBC study.
4. Brief summary of the McFadden-based (stylized-model based), Sonnier, Ainslie, and Otter (2007), and Allenby, et al. (2014) HB CBC specifications.
5. Comparison of estimates for scale adjustment factors from the McFadden-based (stylized-model based), Sonnier, Ainslie, and Otter (2007), and Allenby et al. (2014) specifications. Including alternative estimations accounting for gender, for split-sample, for split choice task, for a mixtures of normal distributions.
6. Posterior distributions for scale adjustment factors and attribute importances.
7. Posterior WTP estimates for McFadden-based (stylized-model based), Sonnier, Ainslie, And Otter (2007) and Allenby et al. (2014) specifications.
8. Additional citations: Five *Marketing Science* papers that discuss scale explicitly

### Online Appendix 3.1.

#### Numerical Example for Profits, Market Shares, Equilibrium Prices, First-Order Conditions and Second-Order Conditions for Stylized Model.

We illustrate the formal insights with a numerical example in which  $\beta^h = 2$ ,  $\beta^l = 1$ ,  $u_o = 1$ ,

and  $R = 0.55$ . We obtain the fixed-point price equilibria by simple iteration combined with grid search.

In all cases, we check that the second-order and cross-partial conditions are satisfied. (R program available from the authors.)

##### 3.1.1. Representative Equilibria for Various Levels of Scale

Table 3.1.1 reports price equilibria for differentiated strategies ( $rs$ ) for different values of scale ( $\gamma^{true}$ ). In practice we expect  $\gamma^{true}$  to be the order of magnitude of the partworths, but to illustrate key issues we vary  $\gamma^{true}$  over a wider range. For very small values of true scale ( $\gamma^{true} = 0.05$ ), the market is less sensitive to price allowing firms to price highly and earn substantial profits. Profits and prices decrease with  $\gamma^{true}$ . For very large values of  $\gamma^{true}$ , the innovator's share in segment S ( $P_{S1rs}^*$ ) approaches zero as does the follower's share in Segment R ( $P_{R2rs}^*$ ). The market becomes more segmented when true scale increases.

Table 3.1.2 reports equilibria for undifferentiated strategies ( $rr$ ) using the same values of true scale as in Table 3.1.1. The second-order conditions are always satisfied for undifferentiated strategies. Low true scale implies high prices and profits. When true scale is large, the market is very sensitive to price and the shares in Segment R approach 50%. If the firms do not differentiate, the high price sensitivity due to large scale drives profits to zero. The last two columns of Table 3.1.2 compare profits between a differentiated ( $rs$ ) strategy and an undifferentiated strategy ( $rr$ ). For low scale (below 1.0), strategy  $rr$  is more profitable than  $rs$  for the follower. This is shown in a **red bold font**.

Table 3.1.3 reports the shares of the outside option in Segment R, Segment S, and overall for both a differentiated market and an undifferentiated market.

Table 3.1.1. Prices, Shares, Profits, and Second-order Conditions: Differentiated Market

| Scale | Prices          |             | Shares in Segment R |              | Shares in Segment S |              | Profits      |               | Second Order Conditions |                                                     |
|-------|-----------------|-------------|---------------------|--------------|---------------------|--------------|--------------|---------------|-------------------------|-----------------------------------------------------|
|       | $\gamma^{true}$ | $p_{1rs}^*$ | $p_{2rs}^*$         | $P_{R1rs}^*$ | $P_{R2rs}^*$        | $P_{S1rs}^*$ | $P_{S2rs}^*$ | $\pi_{1rs}^*$ | $\pi_{2rs}^*$           | $\frac{\partial^2 \pi_{1rs}^*}{\partial p_{1rs}^2}$ |
| 0.05  | 24.625          | 24.603      | 0.192               | 0.183        | 0.183               | 0.192        | 4.622        | 4.600         | -0.009                  | -0.009                                              |
| 0.50  | 2.588           | 2.564       | 0.261               | 0.160        | 0.158               | 0.264        | 0.556        | 0.531         | -0.103                  | -0.107                                              |
| 0.60  | 2.190           | 2.166       | 0.278               | 0.155        | 0.146               | 0.299        | 0.485        | 0.459         | -0.132                  | -0.126                                              |
| 0.70  | 1.909           | 1.885       | 0.295               | 0.149        | 0.139               | 0.316        | 0.435        | 0.408         | -0.157                  | -0.149                                              |
| 0.80  | 1.701           | 1.677       | 0.311               | 0.143        | 0.133               | 0.334        | 0.398        | 0.370         | -0.184                  | -0.173                                              |
| 0.90  | 1.543           | 1.519       | 0.328               | 0.136        | 0.195               | 0.275        | 0.371        | 0.342         | -0.212                  | -0.198                                              |
| 1.0   | 1.418           | 1.394       | 0.345               | 0.130        | 0.126               | 0.352        | 0.349        | 0.316         | -0.137                  | -0.144                                              |
| 2.0   | 0.923           | 0.905       | 0.501               | 0.070        | 0.067               | 0.511        | 0.282        | 0.243         | -0.491                  | -0.573                                              |
| 3.0   | 0.817           | 0.807       | 0.614               | 0.031        | 0.030               | 0.621        | 0.287        | 0.240         | -0.808                  | -0.589                                              |
| 4.0   | 0.787           | 0.783       | 0.692               | 0.013        | 0.013               | 0.696        | 0.304        | 0.251         | -1.200                  | -1.481                                              |
| 5.0   | 0.779           | 0.778       | 0.747               | 0.005        | 0.005               | 0.747        | 0.322        | 0.264         | -1.639                  | -2.018                                              |
| 10    | 0.805           | 0.805       | 0.876               | 0.000        | 0.000               | 0.876        | 0.388        | 0.317         | -3.938                  | -4.815                                              |
| 20    | 0.861           | 0.861       | 0.942               | 0.000        | 0.000               | 0.942        | 0.446        | 0.365         | -8.477                  | -10.36                                              |
| 200   | 0.974           | 0.974       | 0.995               | 0.000        | 0.000               | 0.995        | 0.533        | 0.436         | -89.54                  | -109.4                                              |

Table 3.1.2. Prices, Shares, Profits, and Relative Profits: Undifferentiated Market

| Scale | Prices          |             | Shares in Segment R |              | Shares in Segment S |              | Profits      |               | Relative Profits |                                                 |
|-------|-----------------|-------------|---------------------|--------------|---------------------|--------------|--------------|---------------|------------------|-------------------------------------------------|
|       | $\gamma^{true}$ | $p_{1rr}^*$ | $p_{2rr}^*$         | $P_{R1rr}^*$ | $P_{R2rr}^*$        | $P_{S1rr}^*$ | $P_{S2rr}^*$ | $\pi_{1rr}^*$ | $\pi_{2rr}^*$    | $\frac{\pi_{1rs}^* - \pi_{1rr}^*}{\pi_{1rr}^*}$ |
| 0.05  | 24.619          | 24.619      | 0.190               | 0.190        | 0.184               | 0.184        | 4.618        | 4.618         | 0.004            | <b>-0.018</b>                                   |
| 0.50  | 2.553           | 2.553       | 0.240               | 0.240        | 0.179               | 0.179        | 0.542        | 0.542         | 0.014            | <b>-0.011</b>                                   |
| 0.60  | 2.147           | 2.147       | 0.251               | 0.251        | 0.178               | 0.178        | 0.468        | 0.468         | 0.017            | <b>-0.009</b>                                   |
| 0.70  | 1.858           | 1.858       | 0.262               | 0.262        | 0.176               | 0.176        | 0.415        | 0.415         | 0.020            | <b>-0.007</b>                                   |
| 0.80  | 1.642           | 1.642       | 0.272               | 0.272        | 0.175               | 0.175        | 0.375        | 0.375         | 0.023            | <b>-0.005</b>                                   |
| 0.90  | 1.474           | 1.474       | 0.283               | 0.283        | 0.173               | 0.173        | 0.345        | 0.345         | 0.026            | <b>-0.002</b>                                   |
| 1.0   | 1.341           | 1.341       | 0.294               | 0.294        | 0.172               | 0.172        | 0.320        | 0.320         | 0.029            | 0.004                                           |
| 2.0   | 0.744           | 0.744       | 0.385               | 0.385        | 0.156               | 0.156        | 0.209        | 0.209         | 0.072            | 0.034                                           |
| 3.0   | 0.539           | 0.539       | 0.444               | 0.444        | 0.142               | 0.142        | 0.166        | 0.166         | 0.121            | 0.074                                           |
| 4.0   | 0.425           | 0.425       | 0.476               | 0.476        | 0.134               | 0.134        | 0.137        | 0.137         | 0.167            | 0.114                                           |
| 5.0   | 0.349           | 0.349       | 0.491               | 0.491        | 0.130               | 0.130        | 0.114        | 0.114         | 0.208            | 0.150                                           |
| 10    | 0.177           | 0.177       | 0.500               | 0.500        | 0.127               | 0.127        | 0.059        | 0.059         | 0.329            | 0.258                                           |
| 20    | 0.089           | 0.089       | 0.500               | 0.500        | 0.127               | 0.127        | 0.029        | 0.029         | 0.416            | 0.335                                           |
| 200   | 0.009           | 0.009       | 0.500               | 0.500        | 0.127               | 0.127        | 0.003        | 0.003         | 0.530            | 0.433                                           |

Table 3.1.3. Shares of the Outside Option

| Scale | Outside Option<br>Segment R |              | Outside Option<br>Segment S |              | Outside Option<br>Net Share |             |
|-------|-----------------------------|--------------|-----------------------------|--------------|-----------------------------|-------------|
|       | $P_{Rors}^*$                | $P_{Rorr}^*$ | $P_{Sors}^*$                | $P_{Sorr}^*$ | $P_{ors}^*$                 | $P_{orr}^*$ |
| 0.05  | 0.625                       | 0.626        | 0.625                       | 0.626        | 0.625                       | 0.626       |
| 0.50  | 0.581                       | 0.581        | 0.576                       | 0.581        | 0.579                       | 0.581       |
| 0.60  | 0.576                       | 0.571        | 0.546                       | 0.571        | 0.563                       | 0.571       |
| 0.70  | 0.566                       | 0.562        | 0.535                       | 0.562        | 0.552                       | 0.562       |
| 0.80  | 0.556                       | 0.553        | 0.523                       | 0.553        | 0.541                       | 0.553       |
| 0.90  | 0.477                       | 0.544        | 0.589                       | 0.544        | 0.527                       | 0.544       |
| 1.0   | 0.529                       | 0.534        | 0.518                       | 0.534        | 0.524                       | 0.534       |
| 2.0   | 0.432                       | 0.459        | 0.419                       | 0.459        | 0.426                       | 0.459       |
| 3.0   | 0.356                       | 0.414        | 0.348                       | 0.414        | 0.352                       | 0.414       |
| 4.0   | 0.295                       | 0.390        | 0.291                       | 0.390        | 0.293                       | 0.390       |
| 5.0   | 0.248                       | 0.379        | 0.248                       | 0.379        | 0.248                       | 0.379       |
| 10    | 0.124                       | 0.373        | 0.124                       | 0.373        | 0.124                       | 0.373       |
| 20    | 0.058                       | 0.373        | 0.058                       | 0.373        | 0.058                       | 0.373       |
| 200   | 0.005                       | 0.373        | 0.005                       | 0.373        | 0.005                       | 0.373       |

## Online Appendix 3.2.

### Numerical Example of Market-Research Decisions by a Sophisticated Follower

Decisions on CBC-based market research spending depend upon Equations 6 and 7. Suppose, for the sake of illustration, that the market potential is 10 million units and that prices are scaled in dollars.

Suppose further that the follower anticipates that the higher-quality CBC study reveals the true scale,  $\gamma^{higher} = \gamma^{true}$ . It will act on the  $\gamma^{true}$  that is revealed. It uses its prior to anticipate the  $\gamma^{true}$  that will be revealed. The lower-quality CBC study does not reveal  $\gamma^{true}$ , therefore the follower must act based on its prior. If the follower chooses the lower-quality CBC study, the follower bases its positioning strategy based on expected profits, integrating over  $g(\gamma^{true})$ . The calculations are given in Table 3.2.1.

Based on Table 3.2.1, an undifferentiated strategy has a higher expected value than a differentiated strategy, hence the follower using a lower-quality CBC study would choose  $r$  as per Equation 6. If the follower invests in the higher-quality CBC study, the follower can choose its strategy ( $r$  or  $s$ ) depending upon the  $\gamma^{true}$  it observes. The follower's decision after observing  $\gamma^{true}$  is indicated by the "Best Strategy" column. Choosing the best strategy for each realized  $\gamma^{true}$  yields higher expected profits (\$5,034,722) compared to the best strategy based only on the lower-quality study (\$4,981,407). The difference, \$53,315, is the most that a sophisticated follower would pay for a higher-quality CBC study.

Table 3.2.1 also illustrates that a naïve follower can make strategic errors. Suppose the follower invests in a lower-quality CBC study that tells the firm (incorrectly) that  $\gamma^{true} = 0.1$ . Believing and acting on the lower-quality CBC study, the follower would choose not to differentiate ( $r$ ) and forecast a profit of over \$23.5M. If true scale were really  $\gamma^{true} = 2.0$ , then the firm would (1) position the product incorrectly ( $r$  rather than  $s$ ), (2) bear an opportunity cost of \$335,010, and (3) not realize anywhere near its anticipated profit (\$2.1M vs. \$23.5M).

Table 3.2.1. Illustration of the Follower's Decisions and Outcomes Based on Either a Lower-Quality CBC Study (Columns 3&4) or a Higher-Quality CBC Study (Column 6)

| Prior,<br>$g(\gamma^{true})$ | True<br>Scale,<br>$\gamma^{true}$ | Follower Chooses $s$<br>Based on Lower-<br>Quality CBC Study | Follower Chooses $r$<br>Based on Lower-<br>Quality CBC Study | Best Strategy<br>After $\gamma^{true}$<br>Revealed | Follower Chooses<br>$r$ or $s$ after Higher-<br>Quality CBC Study |
|------------------------------|-----------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------|
| 0.03                         | 0.1                               | \$23,337,834                                                 | \$23,509,998                                                 | $r$                                                | \$23,509,998                                                      |
| 0.03                         | 0.2                               | \$12,027,032                                                 | \$12,186,344                                                 | $r$                                                | \$12,186,344                                                      |
| 0.08                         | 0.3                               | \$8,275,610                                                  | \$8,420,431                                                  | $r$                                                | \$8,420,431                                                       |
| 0.08                         | 0.4                               | \$6,414,787                                                  | \$6,543,437                                                  | $r$                                                | \$6,543,437                                                       |
| 0.08                         | 0.5                               | \$5,310,777                                                  | \$5,421,558                                                  | $r$                                                | \$5,421,558                                                       |
| 0.08                         | 0.6                               | \$4,585,625                                                  | \$4,676,841                                                  | $r$                                                | \$4,676,841                                                       |
| 0.08                         | 0.7                               | \$4,077,318                                                  | \$4,147,275                                                  | $r$                                                | \$4,147,275                                                       |
| 0.08                         | 0.8                               | \$3,704,817                                                  | \$3,751,862                                                  | $r$                                                | \$3,751,862                                                       |
| 0.08                         | 0.9                               | \$3,423,066                                                  | \$3,445,561                                                  | $r$                                                | \$3,445,561                                                       |
| 0.08                         | 1.0                               | \$3,204,993                                                  | \$3,201,369                                                  | $s$                                                | \$3,204,993                                                       |
| 0.03                         | 1.1                               | \$3,033,356                                                  | \$3,002,089                                                  | $s$                                                | \$3,033,356                                                       |
| 0.03                         | 1.2                               | \$2,896,596                                                  | \$2,836,255                                                  | $s$                                                | \$2,896,596                                                       |
| 0.03                         | 1.3                               | \$2,786,715                                                  | \$2,695,922                                                  | $s$                                                | \$2,786,715                                                       |
| 0.03                         | 1.4                               | \$2,697,959                                                  | \$2,575,425                                                  | $s$                                                | \$2,697,959                                                       |
| 0.03                         | 1.5                               | \$2,626,085                                                  | \$2,470,611                                                  | $s$                                                | \$2,626,085                                                       |
| 0.03                         | 1.6                               | \$2,567,891                                                  | \$2,378,368                                                  | $s$                                                | \$2,567,891                                                       |
| 0.03                         | 1.7                               | \$2,520,907                                                  | \$2,296,323                                                  | $s$                                                | \$2,520,907                                                       |
| 0.03                         | 1.8                               | \$2,483,216                                                  | \$2,222,635                                                  | $s$                                                | \$2,483,216                                                       |
| 0.03                         | 1.9                               | \$2,453,264                                                  | \$2,155,856                                                  | $s$                                                | \$2,453,264                                                       |
| 0.03                         | 2.0                               | \$2,429,844                                                  | \$2,094,834                                                  | $s$                                                | \$2,429,844                                                       |
| <b>Expected Profits</b>      |                                   | \$4,975,580                                                  | \$4,981,407                                                  |                                                    | \$5,034,722                                                       |

## Online Appendix 3.3

### Attribute Descriptions and Example Choice Tasks For Dormitory CBC Study.

**CBCfeatures1** 



The dormitory living arrangements that will be shown to you may vary in the features within each of the following categories:

1. Unit type
2. Commute time
3. Access to grocery stores and bars/cafes/restaurants
4. Bedroom size
5. Building amenities
6. Parking
7. Monthly rent per household

The following screens will provide greater detail about the features of dormitory living arrangements. We will delay the forward arrow slightly to enable you to read the screen.

#### 1. Unit type

The family dormitory living options come in three types of units. The pictures are illustrative; the units at your college or university may differ in details.


|                                                                                                                   |                                                                                               |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| <b>Studio</b><br>               | Private bathroom, compact kitchen<br>There are no walls separating sleeping and living areas. |
| <b>1-bedroom apartment</b><br> | Private bathroom, full-size kitchen.<br>The unit includes a living room.                      |
| <b>2 bedroom apartment</b><br> | Private bathroom, full-size kitchen<br>The unit includes a living room.                       |

Please assume that:

- If the unit comes with a living room, the space is large enough to fit a couch and TV.
- If the unit comes with a kitchen, large user-provided appliances are not allowed.
- If the unit comes with a full-size kitchen, the kitchen includes a full-size refrigerator, regular electric stove and oven, and sink.

## 2. Commute time

The dormitories vary on their distance from your classrooms, laboratories, office, and other academic buildings. The three options are:

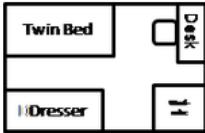
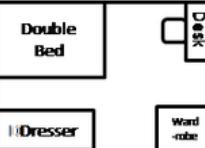
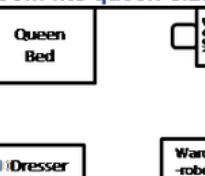
|                                                                                                                                    |                                |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| <b>10 min walk, 3-5 min bike.</b><br>             | About 0.5 or fewer miles away. |
| <b>20 min walk, 6-10 min bike.</b><br>            | About 1 mile away.             |
| <b>20 min bike, driving may be necessary.</b><br> | About 3 miles away.            |

Please assume that:

- Commute time represents the time it takes you to get to your classroom, laboratory, office, or other academic building.
- Times are based on average walking, biking, or driving speeds.

## 3. Access to grocery stores and bars/cafes/restaurants

There are three options describing access from your dormitory living arrangement. The pictures are illustrative, the grocery stores, bars, or restaurants at your college or university may differ in details.




|                                                                                                                                                  |                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| <b>None</b><br>                                               | There is no grocery store or bars/cafes/restaurants in the neighborhood.            |
| <b>Grocery store nearby</b><br>                               | There is a grocery store in the neighborhood, but no bars/cafes/restaurants nearby. |
| <b>Grocery store &amp; bars/cafes /restaurants nearby</b><br> | There is a grocery store as well as bars/cafes/restaurants in the neighborhood.     |

Please assume that:

- The grocery store is an affordable grocery market.
- "Nearby" means the location is a short walk.

#### 4. Bedroom size

There are four options describing the size of the bedrooms in your dormitory living arrangement. The pictures are illustrative, the units at your college or university may differ in details.

|                                                                                                                           |                                                 |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| <b>Bedroom fits twin-size bed.</b><br>   | The bedroom is about 150 sq. ft. (14 sq. m.).   |
| <b>Bedroom fits double-size bed.</b><br> | The bedroom is about 200 sq. ft. (18.5 sq. m.). |
| <b>Bedroom fits queen-size bed.</b><br>  | The bedroom is about 250 sq. ft. (23 sq. m.).   |
| <b>Bedroom fits king-size bed.</b><br>  | The bedroom is about 300 sq. ft. (28 sq. m.).   |

Please assume that:

- All of the bedrooms accommodate a desk, chair, dresser, basic closet, and room to walk around.
- All bedrooms can come furnished or unfurnished at your discretion at the same cost.
- For a studio, this size represents about two-thirds of the total space. The remaining space is made up of the kitchen and bath.

## 5. Building amenities

There are three options describing building amenities in your dormitory living arrangement: none, some, and many. The pictures are illustrative, the amenities at your college or university may differ in details.

|                                                                                                  |                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>None</b><br> | No amenities                                                                                                                                                                   |
| <b>Some</b><br> | Small community lounge, small fitness center, outdoor area, front desk, same-day maintenance service,                                                                          |
| <b>Many</b><br> | Large community lounge, large fitness center, study lounge, music room, recreation/game room, outdoor area, barbecue in outdoor area, front desk, same-day maintenance service |

Please assume that:

- All amenities are free to use for residents.
- All amenities can only be used by residents and their guests.
- If available, the fitness center will be in a central location in the residence
- All dormitories will include a laundry room in the basement of the building with sufficient washers and dryers.
- Bike storage will be available with all buildings.

## ParkingRent



### 6. Parking

There are three options describing parking in your dormitory living arrangement. The pictures are illustrative, the facilities at your college or university may differ in details.

|                                                                                                                      |                                                                                              |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| <b>No parking</b><br>             | There is no parking nearby                                                                   |
| <b>Paid uncovered parking</b><br> | There is uncovered parking nearby for \$160/month.                                           |
| <b>Paid covered parking</b><br>   | There is covered parking nearby for \$190/month.<br>(Some facilities have a covered garage.) |

Please assume that:

- If parking is offered, there is sufficient parking to accommodate all residents who request a spot.
- "Nearby" means the location is within a short walk.

**7. Monthly rent per household**

There are five options describing monthly rent at your dormitory living arrangement.



Please assume that:

- The price listed is per household.
- The price listed includes utilities and Wi-Fi.
- There are no security or cleaning deposits or last month rent required upfront.

Imagine that you are in the market and making the decision of where to live as at your college or university. You are choosing where would be best for you based on a number of alternatives.

If there were no other options available AND all other features not mentioned in the exercise were the same across the dormitory living arrangements shown, which would you choose?

You may click on any attribute to review the levels at any time.

Choose by clicking one of the buttons below:

1 / 16

|                                                             |                                                                                                                                |                                                                                                                                              |                                                                                                                                               |                                                                                                                                  |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| <u>Unit Type</u>                                            | Studio, private bathroom, compact kitchen<br> | 2-bedroom apartment, private bedroom, full-size kitchen<br> | 1-bedroom apartment, private bedroom, full-size kitchen<br> | Studio, private bathroom, compact kitchen<br> |
| <u>Commute Time</u>                                         | 20 min walk, 6-10 min bike<br>                | 20 min bike, driving may be necessary<br>                   | 10 min walk, 3-5 min bike<br>                               | 10 min walk, 3-5 min bike<br>                 |
| <u>Access to Grocery Stores and Bars/Cafes /Restaurants</u> | Nothing In Neighborhood<br>                   | Grocery store nearby<br>                                    | Grocery store & bars/cafes /restaurants nearby<br>          | Nothing In Neighborhood<br>                   |
| <u>Bedroom Size</u>                                         | Bedroom fits twin-size bed<br>              | Bedroom fits queen-size bed<br>                           | Bedroom fits king-size bed<br>                            | Bedroom fits double-size bed<br>            |
| <u>Building Amenities</u>                                   | Some<br>                                    | Many<br>                                                  | None<br>                                                  | None<br>                                    |
| <u>Parking</u>                                              | Paid uncovered parking<br>                  | No parking<br>                                            | Paid covered parking<br>                                  | No parking<br>                              |
| <u>Rent per Household</u>                                   | \$1000<br>                                  | \$2000<br>                                                | \$2500<br>                                                | \$500<br>                                   |
|                                                             | Select                                                                                                                         | Select                                                                                                                                       | Select                                                                                                                                        | Select                                                                                                                           |

Given your knowledge of the real-estate market, would you actually be willing to live in the dormitory living arrangement you chose at the price indicated?

(Please assume that if you choose not to live at the option you chose above, you would be choosing to live off-campus at a residence you found on your own.)

- Yes, I would be live in the dormitory living arrangement that I chose above.
- No, I would rather live off-campus than live in the dormitory living arrangement I chose above.

### Online Appendix 3.4.

**Brief Summary of the McFadden-Based (Stylized-Model Based), Sonnier, Ainslie, And Otter (2007), and Allenby, et al. (2014) HB CBC Specifications.**

**Stylized model (McFadden 2014 based) specification.** In the stylized model specification we model consumer  $i$ 's utility  $u_{ij}$  for product profile  $j$  as:

$$u_{ij} = \sum_{k=1}^K \gamma_i (\beta_{ki} a_{jk} - p_j) + \epsilon_{ij}$$

where  $a_{jk}$  refers to the level of attribute  $k$  (effect-coded) and  $p_j$  to the price (in \$150 units). We apply a multinomial logit model to consumer  $i$ 's choices,  $y_i$ , given attribute levels, price, and preference parameters, within a hierarchical Bayes framework. The  $\beta_i$ 's and  $\ln(\gamma_i)$  are assumed multivariate normally distributed with mean  $\theta$  and covariance matrix  $V$ . The second-stage prior is the standard Normal-Inverted-Wishart conditionally conjugate prior. The hierarchical model is then specified as:

$$\begin{aligned} y_i | a_j, p_j, \beta_i, \gamma_i \\ \beta_i, \ln(\gamma_i) \sim N(\theta, V) \\ V^{-1} \sim W(\nu, \nu V_0) \end{aligned}$$

We apply Allenby et al.'s "default" settings (p. 438) and use a relatively diffuse prior with the following parameters:  $\theta = 0$ ,  $\nu = \dim(\beta_i) + 6$ , and  $V_0 = I$ . Consistent with Allenby et al. (2014) we lower the diagonal element of  $V_0$  corresponding to  $\gamma_i$  to 0.5 to account for its logarithmic scale.

**Sonnier, Ainslie, and Otter (2007) specification.** Sonnier et al. model consumer  $i$ 's utility  $u_{ij}$  as:

$$u_{ij} = \sum_{k=1}^K \frac{1}{\mu_i} (\beta_{ki} a_{jk} - p_j) + \epsilon_{ij}$$

In the first stage prior the  $\beta_{ki}$ 's are assumed normally distributed,  $\ln(\mu_i)$  is assumed normally distributed. The second-stage prior and hyper-priors remain consistent to the stylized model (replacing the hyper-prior for  $\gamma_i$  with an equivalent hyper-prior for  $\mu_i$ ).

**Allenby, Brazell, Howell, and Rossi (2014) specification.** Allenby et al. do not employ a scaling

parameter but estimate a price parameter,  $\beta_{pi}$ , in their utility specification:


$$u_{ij} = \sum_{k=1}^K \beta_{ki} a_{jk} - \beta_{pi} p_j + \epsilon_{ij}$$

The  $\beta_{ki}$ 's are assumed normally distributed,  $\ln(\beta_{pi})$  is assumed normally distributed. The second-stage prior and hyper-priors remain consistent to the stylized model (replacing the hyper-prior for  $\gamma_i$  with an equivalent hyper-prior for  $\beta_{pi}$ ).

We tested other prior specifications, e.g.,  $\nu = \dim(\beta_i) + 16$ , and the results remained consistent (see Appendix 3.5.).

**HB settings.** All settings not specified by Allenby et al. followed standard procedures, e.g., as in Sawtooth Software (2015). For example, we used 10,000 burn-in iterations and a subsequent 10,000 iterations to draw partworths, from which we kept every 10<sup>th</sup> draw. The iteration time series show that the process converged after the burn-in phase for all specifications (see Figure 3.4.1 for log-likelihood statistics). See Appendix\_4\_Supplement\_Iteration\_Statistics.xlsx. All summaries, profits, and other reported quantities are based on the posterior distributions.

Figure 3.4.1. Iteration time series of the three CBC HB Specifications



### Online Appendix 3.5.

Comparison of Estimates for Scale Adjustment Factors from the McFadden-Based (Stylized-Model Based), Sonnier, Ainslie, And Otter (2007), and Allenby et al. (2014) Specifications. Including Alternative Estimations Accounting for Gender, for Split-Sample, for Split Choice Task, for a Mixtures of Normal Distributions.

The detailed estimates are contained in a companion spreadsheet,  
Appendix\_5\_Comparison\_of\_Posterior\_Scale\_Adjustment\_Estimates.xlsx.

### Online Appendix 3.6.

#### Posterior Distributions for Scale Adjustment Factors and Attribute Importances

The full posterior distributions and summaries for the scale adjustment factors, attribute importances, and individual posterior means are contained in a companion spreadsheet, Appendix\_6\_Table\_3\_Relative\_Importances.xlsx and Appendix\_6\_Table\_4\_Scale\_Adjustments.xlsx. See also Appendix\_6\_Individual\_Posterior\_Means\_of\_Random\_Parameters.xlsx.

### Online Appendix 3.7.

#### Posterior WTP Estimates for McFadden-Based (Stylized-Model Based), Sonnier, Ainslie, And Otter (2007) and Allenby et al. (2014) Specifications.

The detailed estimates are contained in a companion spreadsheet,  
Appendix\_7\_Posterior\_WTP\_ratio\_method.xlsx.

### Online Appendix 3.8.

#### Additional Citations: Five Marketing Science Papers that Discuss Scale Explicitly

Fiebig DG, Keane MP, Louviere J, Wasi N (2010) The generalized multinomial logit model: Accounting for scale and coefficient heterogeneity. *Marketing Science* 29(3):393-421.

Gilbride TJ, Lenk PJ, Brazell JD (2008) Market share constraints and the loss function in choice-based conjoint analysis. *Marketing Science* 27(6):995-1011.

Narayan V, Rao VR, Saunders C (2011) How peer influence affects attribute preferences: A Bayesian Updating Mechanism, *Marketing Science* 30(2):368-384.

Salisbury LC, Feinberg FM (2010) Alleviating the constant stochastic variance assumption in decision research: Theory, measurement, and experimental test. *Marketing Science* 29(1):1-17.

Swait J, Erdem T (2007) Brand effect on choice and choice set formation under uncertainty. *Marketing Science* 26(5): 679-697.